集成开发环境(IDE)提供工具支持,以自动化许多源代码编辑任务。传统上,IDE仅使用空间上下文,即开发人员正在编辑的位置来生成候选编辑建议。但是,仅空间上下文通常不足以自信地预测开发人员的下一个编辑,因此IDE在某个位置会产生许多建议。因此,IDE通常不会主动提供建议,而是需要单击特定图标或菜单,然后从大量潜在建议列表中进行选择。结果,开发人员通常会错过使用工具支持的机会,因为他们不知道它存在或忘记使用它。为了更好地理解开发人员行为中的常见模式并产生更好的编辑建议,我们还可以使用时间上下文,即开发人员最近执行的编辑。为了启用基于时间上下文的编辑建议,我们提出了《守望先锋》,这是一种从IDE中执行的开发人员编辑痕迹学习编辑序列模式的新颖技术。我们的实验表明,《守望先锋》具有78%的精度,守望先锋不仅完成了开发人员错过使用IDE工具支持的机会,而且还预测了在IDE中没有工具支持的新编辑。
translated by 谷歌翻译
大多数低编码平台的用户,例如Excel和PowerApps,都以特定于域的公式语言编写程序来执行非平凡的任务。用户通常可以编写他们想要的大部分程序,但是引入了一些小错误,这些错误会产生破损的公式。这些错误既可以是句法和语义,也很难让低代码用户识别和修复,即使只能通过一些编辑解决。我们正式化了产生最后一英里维修问题等编辑的问题。为了解决这个问题,我们开发了Lamirage,这是一种最后一英里的维修发动机发电机,结合了符号和神经技术,以低代码公式语言进行最后一英里维修。 Lamirage采用语法和一组特定领域的约束/规则,它们共同近似目标语言,并使用它们来生成可以用该语言修复公式的维修引擎。为了应对本地化错误和对候选维修进行排名的挑战,Lamirage利用神经技术,而它依赖于符号方法来生成候选维修。这种组合使Lamirage可以找到满足提供的语法和约束的维修,然后选择最自然的修复。我们将Lamirage与400个Real Excel和PowerFX公式的最新神经和符号方法进行了比较,其中Lamirage的表现优于所有基线。我们释放这些基准,以鼓励在低代码域中进行后续工作。
translated by 谷歌翻译
光度立体声是使用在不同照明下捕获的对象的图像恢复3D表面正态的问题,在计算机视觉研究中具有极大的兴趣和重要性。尽管现有的传统和深度学习方法取得了成功,但由于:(i)三个或更多不同的照明图像的要求仍然具有挑战性精确的3D地面真相表面正常和已知的照明信息用于训练。在这项工作中,我们尝试使用仅两个不同照明的图像(称为PS2问题)来解决一个未经探索的光度立体声问题。这是单个基于图像的重建方法(例如Shape(SFS)的形状)和传统的光度立体声(PS)之间的中间情况,该方法需要三个或更多图像。我们提出了一个基于反向渲染的深度学习框架,称为DEEPPS2,该框架共同执行表面正常,反照率,照明估计和图像重新估算,并以完全自我监督的方式重新保留,而无需地面真相数据。我们演示了与图像重建结合结合的图像重新构造如何在自我监督的设置中增强照明估计。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
数据增强是自然语言处理(NLP)模型的鲁棒性评估的重要组成部分,以及增强他们培训的数据的多样性。在本文中,我们呈现NL-Cogmenter,这是一种新的参与式Python的自然语言增强框架,它支持创建两个转换(对数据的修改)和过滤器(根据特定功能的数据拆分)。我们描述了框架和初始的117个变换和23个过滤器,用于各种自然语言任务。我们通过使用其几个转换来分析流行自然语言模型的鲁棒性来证明NL-Upmenter的功效。基础架构,Datacards和稳健性分析结果在NL-Augmenter存储库上公开可用(\ url {https://github.com/gem-benchmark/nl-augmenter})。
translated by 谷歌翻译
手写文档映像二值化由于书面内容和复杂的背景属性,如页面样式,纸张质量,污渍,阴影梯度和非均匀照明等复杂背景属性而挑战。虽然传统的阈值方法没有有效地推广在这种具有挑战性的真实情景中,但是在提供足够的训练数据时,基于深度的基于学习的方法表现得相对较好。但是,现有数据集的大小和多样性有限。这项工作提出了LS-HDIB - 一个大规模的手写文件映像二值化数据集,其中包含跨越众多真实情景的百万个文档图像。此外,我们介绍了一种新颖的技术,它使用自适应阈值和无缝克隆方法的组合来创建数据集,以准确的基础事实。通过广泛的定量和定性评估超过八种不同的基于深度学习的模型,我们在LS-HDIB数据集上培训并在看不见的图像上进行测试时,我们展示了这些模型的性能的增强。
translated by 谷歌翻译
Advances in reinforcement learning have led to its successful application in complex tasks with continuous state and action spaces. Despite these advances in practice, most theoretical work pertains to finite state and action spaces. We propose building a theoretical understanding of continuous state and action spaces by employing a geometric lens. Central to our work is the idea that the transition dynamics induce a low dimensional manifold of reachable states embedded in the high-dimensional nominal state space. We prove that, under certain conditions, the dimensionality of this manifold is at most the dimensionality of the action space plus one. This is the first result of its kind, linking the geometry of the state space to the dimensionality of the action space. We empirically corroborate this upper bound for four MuJoCo environments. We further demonstrate the applicability of our result by learning a policy in this low dimensional representation. To do so we introduce an algorithm that learns a mapping to a low dimensional representation, as a narrow hidden layer of a deep neural network, in tandem with the policy using DDPG. Our experiments show that a policy learnt this way perform on par or better for four MuJoCo control suite tasks.
translated by 谷歌翻译
Deep neural networks can approximate functions on different types of data, from images to graphs, with varied underlying structure. This underlying structure can be viewed as the geometry of the data manifold. By extending recent advances in the theoretical understanding of neural networks, we study how a randomly initialized neural network with piece-wise linear activation splits the data manifold into regions where the neural network behaves as a linear function. We derive bounds on the density of boundary of linear regions and the distance to these boundaries on the data manifold. This leads to insights into the expressivity of randomly initialized deep neural networks on non-Euclidean data sets. We empirically corroborate our theoretical results using a toy supervised learning problem. Our experiments demonstrate that number of linear regions varies across manifolds and the results hold with changing neural network architectures. We further demonstrate how the complexity of linear regions is different on the low dimensional manifold of images as compared to the Euclidean space, using the MetFaces dataset.
translated by 谷歌翻译
3D object detection is vital as it would enable us to capture objects' sizes, orientation, and position in the world. As a result, we would be able to use this 3D detection in real-world applications such as Augmented Reality (AR), self-driving cars, and robotics which perceive the world the same way we do as humans. Monocular 3D Object Detection is the task to draw 3D bounding box around objects in a single 2D RGB image. It is localization task but without any extra information like depth or other sensors or multiple images. Monocular 3D object detection is an important yet challenging task. Beyond the significant progress in image-based 2D object detection, 3D understanding of real-world objects is an open challenge that has not been explored extensively thus far. In addition to the most closely related studies.
translated by 谷歌翻译
Recent methods demonstrate that data augmentation using counterfactual knowledge can teach models the causal structure of a task, leading to robust and generalizable models. However, such counterfactual data often has a limited scale and diversity if crowdsourced and is computationally expensive to extend to new perturbation types if generated using supervised methods. To address this, we introduce a new framework called DISCO for automatically generating high-quality counterfactual data at scale. DISCO engineers prompts to generate phrasal perturbations with a large general language model. Then, a task-specific teacher model filters the generation to distill high-quality counterfactual data. We show that learning with this counterfactual data yields a comparatively small student model that is 6% (absolute) more robust and generalizes 5% better across distributions than baselines on various challenging evaluations. This model is also 15% more sensitive in differentiating original and counterfactual examples, on three evaluation sets written by human workers and via human-AI collaboration.
translated by 谷歌翻译